Scalable Iterative Classification for Sanitizing Large-Scale Datasets

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Scalable Feature Selection Algorithm for Large Datasets – Quick Branch & Bound Iterative (QBB-I)

Feature selection algorithms look to effectively and efficiently find an optimal subset of relevant features in the data. As the number of features and the data size increases, new methods of reducing the complexity while maintaining the goodness of the features selected are needed. We review popular feature selection algorithms such as the probabilistic search algorithm based Las Vegas Filter ...

متن کامل

ScalParC: A New Scalable and Efficient Parallel Classification Algorithm for Mining Large Datasets

In this paper, we present ScalParC (Scalable Parallel Classifier), a new parallel formulation of a decision tree based classification process. Like other state-of-the-art decision tree classifiers such as SPRINT, ScalParC is suited for handling large datasets. We show that existing parallel formulation of SPRINT is unscalable, whereas ScalParC is shown to be scalable in both runtime and memory ...

متن کامل

Scalable Locality-Sensitive Hashing for Similarity Search in High-Dimensional, Large-Scale Multimedia Datasets

Similarity search is critical for many database applications, including the increasingly popular online services for Content-Based Multimedia Retrieval (CBMR). These services, which include image search engines, must handle an overwhelming volume of data, while keeping low response times. Thus, scalability is imperative for similarity search in Webscale applications, but most existing methods a...

متن کامل

Diffeomorphic Iterative Centroid Methods for Template Estimation on Large Datasets

A common approach for analysis of anatomical variability relies on the estimation of a template representative of the population. The Large Deformation Diffeomorphic Metric Mapping is an attractive framework for that purpose. However, template estimation using LDDMM is computationally expensive, which is a limitation for the study of large datasets. This paper presents an iterative method which...

متن کامل

Scalable Varied Density Clustering Algorithm for Large Datasets

Finding clusters in data is a challenging problem especially when the clusters are being of widely varied shapes, sizes, and densities. Herein a new scalable clustering technique which addresses all these issues is proposed. In data mining, the purpose of data clustering is to identify useful patterns in the underlying dataset. Within the last several years, many clustering algorithms have been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2017

ISSN: 1041-4347

DOI: 10.1109/tkde.2016.2628180